1 The LR5 is a specialist submarine for underwater rescues.

The average	density	of sea	water is	1028	ka/m^3 .
					,

/_\	/:\	State the equation	. : . :	-l:££		
(a)	(1)	State the eduation	i iinkina pressure	aimerence	genth gensity	v and a
(4)	('')	State the equation	i miniming pressure	annerence,	acpeny acrisic	, arra g.

(1)

(2)

(iii) Atmospheric pressure is 1.0×10^5 Pa.

Calculate the total pressure on the LR5 when it is at a depth of 700 m.

(1)

	On another descent, the LR5 experiences a total pressure of 41×10^5 Pa.	
	The entrance to the LR5 is through an access door which has an area of 3.1 m ² .	
	(i) State the equation linking pressure, force and area.	(1)
	(ii) Calculate the force on the outside of the door.	(3)
	force =	N
(c)	The LR5 is tested in fresh water.	
	The density of fresh water is 1000 kg/m³.	
	Explain why the pressure on the submarine in the fresh water is less than the pressure in sea at the same depth.	
		(1)

(d) A student is given a sample of fiquid labelled sea water.					
sea water					
Describe an experiment that the student could carry out to find the density of the sample.	(5)				

(Total for Question 1 = 14 marks)

2 A student places a pile of coins on a table, as shown in photograph A.

Photograph A

There are 8 coins in the pile.

The weight of each coin is 0.036 N.

The area of each coin is 0.0013 m².

(a) (i) State the equation linking pressure, force and area.

(1)

(ii) Calculate the pressure on the table caused by the pile of coins.

(2)

Pressure = Pa

(b) The student then spreads the 8 coins out on the table as shown in photograph **B**.

Photograph **B**

(1)	Describe how this affects the total force from the coins on the table.	(2)
 (ii)	Explain how this affects the pressure on the table caused by the coins.	(2)
(ii)	Explain how this affects the pressure on the table caused by the coins.	(2)
 (ii)	Explain how this affects the pressure on the table caused by the coins.	(2)

(Total for Question 2 = 7 marks)

2	This q	uest	tion is about temperature and pressure in gases.	
	(a) A	gas	is heated in a container which has a constant volume.	
	Th	e pa	articles in the gas	(1)
	×	Δ	expand	(1)
	X		hit the walls of the container harder	
	×		move closer together	
	×		have a lower average speed	
			be what happens to the average kinetic energy of particles as the temperat ases from 10 K towards 0 K.	ure
				(2)
	(c) (i)	Со	nvert a temperature of 27 °C into kelvin (K).	
	() ()			(1)
			temperature =	K
	(ii)) Th	e gas in a cylinder has a pressure of 210 kPa at a temperature of 27°C.	
	,		Iculate the new pressure when the temperature of the gas rises to 81°C.	
				(3)
			pressure =	kPa
			p. 6334.1.	

(Total for Question 2 = 7 marks)