
1 The diagram shows a heater coil and a resistor connected to a 12 V battery and an ammeter. The ammeter reading is 1.2 A.

(a) (i) State the equation linking voltage, current and resistance.

(1)

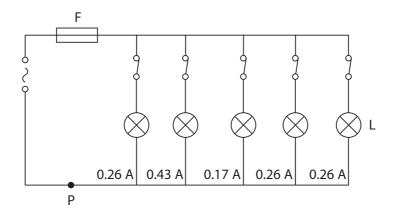
(ii) Calculate the voltage across the 4.0 Ω resistor.

(2)

(iii) Show that the voltage across the heater coil is about 7 V.

(2)

(iv) Calculate the energy transferred to the heater coil in 5.0 minutes.


(3)

Energy transferred = J

After a while, the temper	of the water increases.	ow the boiling point of water.
Explain why the tempera	ature reaches a steady value.	(2)
(b) Resistors can be used as hea The diagram shows two pos	ting elements in the rear window	rs of cars.
	X Y]]]
(i) Complete the table by p	lacing a tick (\checkmark) in the correct bo	xes. (1)
Design	Series	Parallel
Design X	Series	Parallel
-	Series	Parallel
X Y	Series s and disadvantages of design X v	
X Y (ii) Describe the advantages		vhen used as a
X Y (ii) Describe the advantages		vhen used as a
X Y (ii) Describe the advantages		vhen used as a

2 The diagram shows part of a lighting circuit in a house.

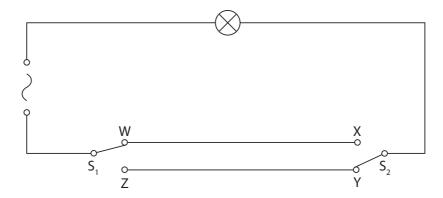
The circuit is protected by fuse F.

(a) Give two reasons why the lamps are wired in parallel.

(2)

1	 		 							

2		 	 	 	 	 	 		 	


(b) What is the current at P?

(1)

- A 0.17 A
- B 0.26 A
- ☑ D 1.38 A

(c) Explain how the fuse protects the	ne circuit.	(3)
(d) (i) State the equation linking p	ower, current and voltage.	(1)
		(1)
(ii) Calculate the power of lamp [assume the mains voltage i		(2)
		(4)
		W
	ergy transferred by lamp L in 3 minu	ites.
Give the unit.		(3)
e	energy transferred =	unit

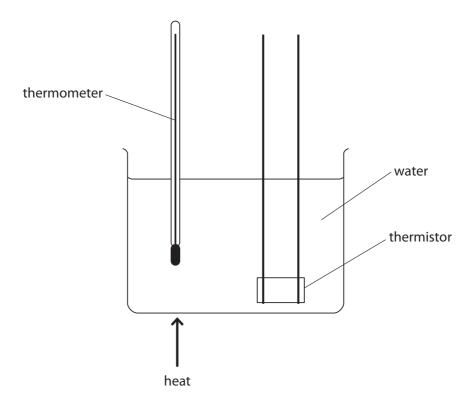
(e) This diagram shows another lighting circuit.

(i) Complete the table by putting a tick (\checkmark) in the box if the lamp is lit and a cross (x) in the box if the lamp is not lit.

(2)

S ₁ position	S ₂ position	lamp lit (√ or ×)
W	X	
W	Υ	
Z	Х	
Z	Υ	

(ii)	Suggest where	thic	circuit	would	he II	seful in	a house
(11)	Duddest where	111115	CHCUIL	would	DE U	seiui iii	a House


(1)

(Total for Question 2 = 15 marks)

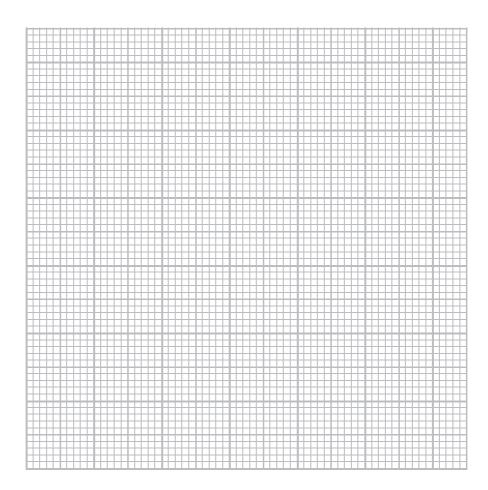
3 A student investigates how the voltage across a thermistor varies with temperature.

The student keeps the current in the thermistor constant, but varies the temperatures between 20 $^{\circ}$ C and 100 $^{\circ}$ C.

(a) The diagram shows how the student sets up his apparatus.

Suggest three changes to this set up that would improve the accuracy of the measurement of the thermistor temperature.

1		
2		
3		
	(b) What instrument should the student use to measure the current in the thermisto	r?
		(1)


(3)

(c) The table shows the student's results.

Temperature in °C	Voltage in V
20	6.0
40	2.2
60	1.1
80	0.2
100	0.4

(i) Plot a graph of voltage against temperature and draw the line of best fit.

(5)

(ii) Circle the anomalous point on your graph.

(d) (i)	State the equation linking voltage, current and resistance.	(1)
(ii)	At room temperature the thermistor has a resistance of 680 $\Omega.$ The voltage across it is 5.9 V. Show that the current in the thermistor is about 8.5 mA.	(3)
	(Total for Question 3 = 14 mar	ks)