
1 The table gives information about the first four elements in Group 7 of the Periodic Table.

Element	Atomic number	Electronic configuration	Physical state at 20°C	Colour at 20°C
fluorine	9	2.7	gas	pale yellow
chlorine	17	2.8.7	gas	pale green
bromine	35	2.8.18.7	liquid	red-brown
iodine	53	2.8.18.18.7	solid	dark grey

				9	1	
	bromine	35	2.8.18.7	liquid	red-brown	
	iodine	53	2.8.18.18.7	solid	dark grey	
	It is possi elements	ible to make լ s in Group 7.	omic number of 85 oredictions about as	statine by compari	ison with the other	(1)
Phv			e and colour would			(2)
Con	(iii) Predi	ct the formul	a of the compound or this compound.		astatine and hydrog	en. (2)
	(iv) Sugg		eactivity of astatine	compares to that	of iodine.	(2)

(b) Chlorine gas can be prepared by heating a mixture of concentrated hydrochloric acid and manganese(IV) oxide using this apparatus.

(i) Balance the equation for the reaction.

(1)

(ii) State what you would observe when a piece of damp litmus paper is placed into the gas jar containing chlorine.

(1)

(c)	Chlorine c	ran be used to obtain bromine (Br ₂) from sea water.	
	Sea water	contains bromide ions, Br [—]	
	The pH of	sea water is usually within the range of 7.5 to 8.4	
	The stage:	s in the extraction of bromine from sea water are	
	Stage 1	The pH of the sea water is lowered to about 3.5	
	Stage 2	An excess of chlorine is bubbled through the sea water	
	Stage 3	The bromine (Br_2) is removed from the mixture and reacted with sulfur dioxide (SO_2) and water. This reaction converts the bromine to hydrogen bromide (HBr) and sulfuric acid (H_2SO_4)	
	Stage 4	The hydrogen bromide is reacted with chlorine to form bromine (Br ₂)	
	(i) Sugge	st a substance that could be added to lower the pH of sea water in Stage	e 1. (1)
	(ii) Why is	an excess of chlorine added in Stage 2?	(1)
	(iii) Write a	a chemical equation for the reaction in Stage 3.	(2)
	(iv) Write a	a chemical equation for the reaction in Stage 4.	(1)
(d)		colour change observed when bromine is added to an aqueous solution um iodide.	(2)
Colour	of potassi	um iodide solution at start	
Colour	of final rea	action mixture	
		(Total for Question 1 = 16 ma	rks)

1	This question is about halogens and halides.	
	(a) At room temperature bromine is	(1)
	☑ A a brown gas	(-)
	■ B a red-brown liquid	
	C a colourless liquid	
	■ D a grey solid	
	(b) Sodium reacts with bromine to form sodium bromide.	
	Balance the equation for this reaction.	(5)
		(1)
	Na +Br, →NaBr	
	2	

(c) A student carries out some experiments to investigate displacement reactions.

She adds some halogen solutions to halide solutions and observes whether a

The table shows her results.

reaction occurs.

	Halogen solution added		
Halide solution	bromine	chlorine	iodine
lithium chloride	no reaction	(not done)	no reaction
sodium bromide	(not done)	reaction occurs	no reaction
potassium iodide	reaction occurs	reaction occurs	(not done)

(i)	The table shows that she did not do three experiments.	
	Suggest why she did not do these experiments.	(1)
 (ii)	The table shows that there was no reaction in three experiments.	
	Why was there no reaction in these experiments?	(1)

(iii) The student writes this word equation for one of the experiments in which a reaction occurs.	
bromine + potassium iodide → potassium bromine + iodir	ne
The name of one of the substances is incorrect.	
Write the correct name of this substance.	(1)
(iv) A reaction occurs when the student adds chlorine solution to potassium iodide solution.	
Complete the chemical equation for this reaction.	(2)
Cl_2 + + +	
(v) All displacement reactions are examples of redox reactions.	
State the meaning of the term redox .	(1)
(vi) The ionic equation for another reaction is	
$\mathrm{Br}_{2} + \mathrm{2I}^{-} \rightarrow \mathrm{2Br}^{-} + \mathrm{I}_{2}$	
Explain which species is oxidised in this reaction.	(2)
(Total for Question 1=	= 10 marks)