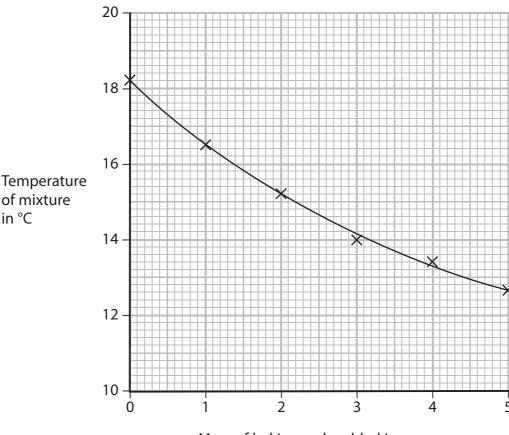
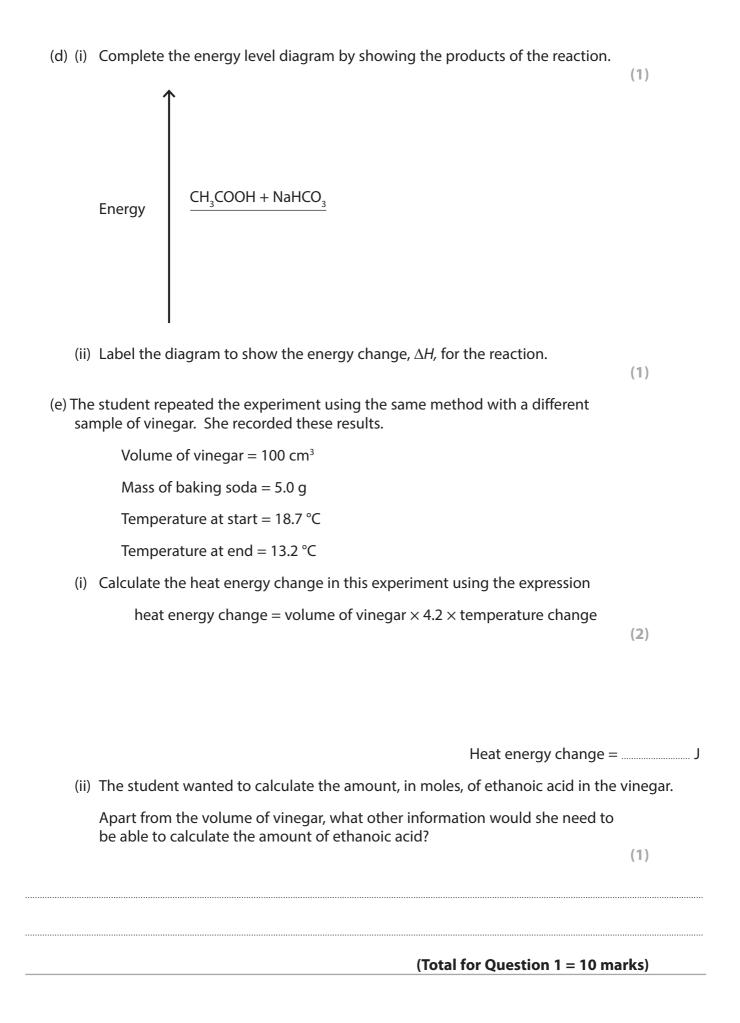
2	Carbon	monoxide and hydrogen are used in the manufacture of methanol (CH_3OH).	
	The rea	action is reversible and can reach a position of dynamic equilibrium.	
		$CO(g) + 2H_2(g) \rightleftharpoons CH_3OH(g)$ $\Delta H = -91 \text{ kJ/mol}$	
	The rea	action is carried out at a pressure of about 100 atmospheres and a temperature °C.	
	(a) Sta	te two features of a reaction that is in dynamic equilibrium.	(2)
1			
2			
	(b) (i)	How would a decrease in temperature at constant pressure affect the amount of methanol in the equilibrium mixture?	
		Explain your answer.	(2)
	(ii)	How would an increase in pressure at constant temperature affect the amount of methanol in the equilibrium mixture?	
		Explain your answer.	(0)
			(2)


(c)	(c) Methanol (CH_3OH) can be converted into methanal (H_2CO). A mixture of methanol and oxygen is passed over an iron oxide catalyst at 250 °C.		
	Methanal and water are the only two products.		
	(i) Write a chemical equation for the conversion of methanol into methanal.	(2)	
	(ii) What is meant by the term catalyst ?	(2)	
	(iii) Explain how a catalyst works.	(2)	
(d)	Methanol can be used in racing cars as an alternative fuel to petrol.		
	Write the chemical equation for the complete combustion of methanol.	(2)	
	(Total for Question 2 = 14 mark	(s)	

1 A teacher asked her students to suggest some experiments that could be done using chemicals found in the home. One student planned an experiment to measure the temperature change when baking soda is added to vinegar.

She wrote this plan.


- pour 100 cm³ of vinegar into a polystyrene cup
- weigh out five separate 1 g portions of baking soda
- measure the temperature of the vinegar
- add 1 g of baking soda to the vinegar and stir
- record the new temperature
- add the other portions of baking soda, stirring and recording the temperature after each portion is added

The graph shows her results.

Mass of baking soda added in grams

(a) Th	The student said that the reaction in her experiment was not complete.		
Но	ow does the graph support her statement?	(1)	
(b) Th	e student used a polystyrene cup rather than a glass beaker.		
W	hy is it better to use a polystyrene cup?	(1)	
(c) Vi	negar contains ethanoic acid. Baking soda contains sodium hydrogencarbonate.		
Th	ne student found this equation for the reaction:		
	$CH_3COOH + NaHCO_3 \rightarrow CH_3COONa + H_2O + CO_2$		
(i)	There is no colour change during this reaction.		
	Suggest one observation, other than the change in temperature, that could be made during the reaction.		
		(1)	
(ii)	The compound CH_3COOH is an acid and the compound CH_3COONa is a salt.		
	The graph shows that the temperature goes down during the reaction.		
	Use this information to state the two types of reaction occurring.	(2)	

