1 The LR5 is a specialist submarine for underwater rescues.

The average density of sea water is 1028 kg/m³.

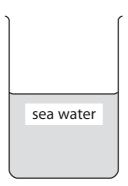
(a) (i) State the equation linking pressure difference, depth, density and g.

(1)

$$p = rho * g * h$$

(ii) Calculate the increase in pressure as the LR5 descends from the surface to a depth of 700 m.

(2)


(iii) Atmospheric pressure is 1.0×10^5 Pa.

Calculate the total pressure on the LR5 when it is at a depth of 700 m.

(1)

	Pa.
The entrance to the LR5 is through an access door which has an area	of 3.1 m ² .
(i) State the equation linking pressure, force and area.	
p = f/a	(1)
(ii) Calculate the force on the outside of the door.	(3)
f = p*a = 41*10^5 * 3.1 = 12,700,000 N	
force =	N
(c) The LR5 is tested in fresh water.	
The density of fresh water is 1000 kg/m³.	
Explain why the pressure on the submarine in the fresh water is less t pressure in sea at the same depth.	han the
p	(1)
resh water has a lower density than sea water and so at the he weight of water above the submarine is higher in sea wat	

(d) A student is given a sample of liquid labelled sea water.

Describe an experiment that the student could carry out to find the density of the sample.

(5)

Measure the mass of the sea water in gram scales, be sure too subtract the mass of the before pouring in the water. Next measure	ne container by zeroing the scales
by pouring it into a measuring cylinder and meniscus. Finally use the equation density	
density.	
	(Total for Question 1 = 14 marks)

2 A student places a pile of coins on a table, as shown in photograph A.

Photograph A

There are 8 coins in the pile.

The weight of each coin is 0.036 N.

The area of each coin is 0.0013 m².

(a) (i) State the equation linking pressure, force and area.

$$p = f/a$$

(1)

(ii) Calculate the pressure on the table caused by the pile of coins.

(2)

$$p = f/a = (8 * 0.036) / 0.0013 = 221Pa$$

Pressure = Pa

(b) The student then spreads the 8 coins out on the table as shown in photograph **B**.

Photograph **B**

(i) Describe how this affects the total force from the coins on the table.

	(2)
the total force is unchanged because there are the sem number of before and their weights have not changed.	coins as
(ii) Explain how this affects the pressure on the table caused by the coins.	
	(2)
The pressure is reduced because the same force as before is now s	spread over
a larger area, (8 * 0.0013)m^2 instead of 0.0013m^2. so the pressure less, or 27.7Pa.	e is 8 times
1000, 01 27:77 d.	

(Total for Question 2 = 7 marks)

(1) perature (2)
perature
perature
(2)
(4)
(1)
K
C.
(3)

(Total for Question 2 = 7 marks)